martes, 5 de marzo de 2019

Ocho cosas insólitas que quizás no sepa sobre el Big Bang

ABC CIENCIA
Gonzalo López Sánchez


El Big Bang no fue ni grande ni hizo «bang». Mariano Abril resuelve muchas curiosidades científicas como estas en su libro «225 preguntas sobre la naturaleza del Universo».


En apenas tres minutos, nació la materia tal como la conocemos y el Universo alcanzó una extensión de miles de millones de años luz - ABC


Le proponemos que, durante un instante, se olvide de sus problemas y de la precampaña electoral. Que recuerde que, según ha establecido la teoría de la relatividad general de Einstein, el Universo (o el espacio-tiempo, si lo prefiere) comenzó en la singularidad del Big Bang o Gran Explosión. Que, a efectos prácticos y en contra de lo que pueda parecer, este Big Bang no ha finalizado todavía, puesto que el Universo sigue expandiéndose. En definitiva, que toda la materia y la energía que le rodea, incluyéndole a usted mismo, con sus problemas y sus placeres, comenzó en una singularidad en la que el Universo era infinitésimamente pequeño e infinitamente denso y que, un instante después, el espacio-tiempo se expandió a una velocidad superior a la de la luz. ¿Cómo ocurrió esto, realmente? ¿Cómo podemos saberlo?
Puede encontrar unas cuantas respuestas a esta y a otras muchas preguntas en « 225 preguntas sobre la naturaleza del Universo» (editorial Marcombo), de Mariano Abril Domingo. Encontrará un grueso volumen repleto de explicaciones sencillas y amenas para las preguntas esenciales sobre la realidad natural que nos rodea: ¿Qué es un isótopo? ¿Qué es el espín? ¿Cómo son los quarks? ¿Por qué se mueven los planetas? ¿ Qué es un agujero negro? ¿Qué es la curvatura espacio-temporal, la flecha del tiempo o los branas de la teoría de cuerdas?
Probablemente una de las preguntas más importantes de todas ellas es: ¿De dónde venimos? ¿Cuál es el origen de todo? Lo cierto es que no hay una única forma de tratar de contestar a esta pregunta pero, en esta ocasión, Mariano Abril se centra en la respuesta dada por la ciencia: el Big Bang. Para comprenderlo mejor le proponemos contarle un puñado de hechos insólitos sobre este crucial momento de la vida del Universo y, por tanto, de la nuestra, que quizás no conozca.
Antes de hacerlo, conviene recordar que los cosmólogos tienen varios modelos para explicar el Universo, como el del Universo estacionario (según el cual no hay un principio ni un fin ni el Universo ni este cambia con el tiempo), o la teoría de los muchos mundos (multiversos), según la cual todos los universos cuánticos existen a la vez. Otros hablan del Universo oscilante, en el que todo sufririría una serie infinita de oscilaciones, iniciadas con un Big Bang y finalizadas con un Big Crunch. En este caso, explicaremos la teoría estándar, que describe un Universo en expansión a partir de un Big Bang.

En realidad el Big Bang no fue grande

El primer hecho sorprendente es que el término Big Bang está francamente mal escogido. Fue «inventado» en 1949 por el astrónomo inglés Fred Hoyle de forma totalmente involuntaria: al referirse al Big Bang, por primera vez, su intención era ridiculizarlo como teoría científica.
El Big Bang no fue la explosión que solemos imaginar: este «estallido» creó el propio espacio en el que se expandió la energía
El Big Bang no fue la explosión que solemos imaginar: este «estallido» creó el propio espacio en el que se expandió la energía - ABC
De hecho, con el tiempo se ha intentado cambiarle el nombre. ¿Por qué? Mariano Abril recoge un extracto escrito por Michio Kaku, en «Universos paralelos»: «Para empezar, el Big Bang no era grande (ya que se originó por una pequeña singularidad de algún tipo mucho más pequeña que un átomo) y, en segundo lugar, no hubo "bang", (puesto que en el espacio exterior no hay aire)», escribió este autor.

Un sacerdote fue clave

Quizás tampoco sepa que esta teoría se la debemos, en gran medida, a un sacerdote: el astrónomo belga Georges Lemaître. En 1927, Lemaître publicó un artículo en el que concluía que los desplazamientos al rojo observados en la luz de las nebulosas extragalácticas, un fenómeno que ocurre cuando la fuente de luz se aleja de nosotros, se debía a la expansión del espacio. En 1931, firmó un breve artículo en el que sugirió que el principio del Universo se podría concebir como un átomo único (también conocido como átomo primigenio), cuyo peso atómico fuera la masa total del Universo, que se escindiría en estrellas atómicas.
Aparte de estas ideas, fueron fundamentales las observaciones de astrónomos, como Vesto M. Slipher, y los cálculos de físicos, como Alexander Friedman, que llevaron a considerar la existencia de otras galaxias aparte de nuestra Vía Láctea. Ya en 1929 Edwin Hubble publicó una serie de observaciones demoledoras que demostraron la expansión del Universo.
En 1948, los cosmólogos George Gamow y Ralph Alpher escribieron un relevante artículo donde discutieron la nucleosíntesis (la generación de elementos químicos en el Universo) a partir de la explosión de este átomo primigenio.

No hay un antes del Big Bang

Gracias a décadas de trabajo, los científicos han concluido que la explosión inicial ocurrió hace unos 13.800 millones de años. En ese momento comenzó la expansión del Universo y la materia y la energía se fueron transformando de modo que aparecieron las estrellas, las galaxias y todo lo que vemos.
El Big Bang creó el espacio-tiempo, por lo tanto, no había más allá de él ni antes de él
El Big Bang creó el espacio-tiempo, por lo tanto, no había más allá de él ni antes de él - NASA/JPL-CALTECH
Pero, ¿qué había antes? La respuesta es que esta pregunta no tiene mucho sentido. Tal como explica Mariano Abril, el propio tiempo y el espacio fueron creados en el momento del Big Bang. No hay un tiempo anterior a este evento, puesto que, sencillamente, no existía, ni un espacio limpio en el que ocurriera todo: el espacio también apareció con el Big Bang. De hecho, en otro artículo explicamos que el espacio, en sí mismo, es una cosa que existe por sí sola, una cosa física que se deforma, se ondula y se expande y que tiene propiedades.

Las teorías no pueden explicar cómo comenzó

Hemos dicho que el Big Bang ocurrió hace 13.800 millones de años, y que fue en ese momento cuando el cronómetro del tiempo comenzó a correr. «En ese estado inicial, la densidad de materia y energía por unidad de volumen y el tejido del propio espacio y tiempo (la curvatura espacio-temporal) se hacen infinitos de modo que las ecuaciones de la física que hoy conocemos no se pueden aplicar», escribe Mariano Abril.
¿Qué quiere decir esto? Que al igual que ocurre en el interior de los agujeros negros, el Big Bang encierra un descomunal signo de interrogación: una singularidad.
En el interior de los agujeros negros, como el representado en la imagen, existe una singularidad, un punto donde el valor de ciertas magnitudes es infinito
En el interior de los agujeros negros, como el representado en la imagen, existe una singularidad, un punto donde el valor de ciertas magnitudes es infinito - ABC
«Esta se define como un punto del espacio-tiempo de curvatura infinita, donde la gravedad (o la densidad o la geometría, magnitudes físicas relacionadas con los campos gravitatorios), es infinita», escribe el autor de «225 preguntas sobre la naturaleza del Universo».
La singularidad es, en definitiva, un punto de ruptura de las leyes físicas, tal como las conocemos. Dentro de ellas hay magnitudes infinitas, que no tienen término ni fin, y también infinitésimas, que tienen aquel valor numérico que puede ser menor que cualquier otro que se considere. En efecto, «la teoría del Big Bang postula que el Universo comenzó teniendo un tamaño cero, una densidad infinita, una temperatura infinita y una curvatura espacio-temporal infinita», resume Abril.

El Big Bang estaba realmente caliente

Partiendo de ese punto de tamaño nulo y densidad infinita que era la singularidad del Big Bang, los científicos consideran que, instantes después, este alcanzó una temperatura de 1o^32 grados kelvin(a efectos prácticos podemos considerar este número como equivalente a 10^32 grados centígrados), es decir, siete cuatrillones de veces superior a la temperatura del interior del Sol (que es de unos escalofriantes 14 millones de grados kelvin, en comparación con los 6.000 que hay en su superficie).
Conviene tener en cuenta un importante hecho: a medida que el Universo se expande, se enfría. Y, gracias a que disminuye la temperatura, las partículas subatómicas tuvieron la oportunidad de agruparse formando la materia tal y como hoy la conocemos.

Todo ocurrió en tres minutos

Solemos pensar que el Big Bang fue una enorme explosión, como la que podemos ver en una explosión de fuegos artificiales, pero mucho más grande. Pero ya hemos dicho que no fue así: El Big Bang fue el propio creador del espacio en el que se expandió la energía: una especie de burbuja que se contenía a sí misma y que estalló en todas partes al mismo tiempo.
Pero no solo eso. Curiosamente, el Big Bang fue lo más efímero que se pueda concebir, pero duró épocas enteras.
En un principio, atravesó la época de Planck: «No sabemos mucho de esta época, tan solo que las cuatro fuerzas de la naturaleza eran una sola cosa», explica Mariano Abril, para referirse a las cuatro interacciones fundamentales: la gravitacional, la electromagnética, la nuclear fuerte y la nuclear débil. Este período duró 10^-43 segundos.
Después, y hasta los 10^-36 segundos, tuvo lugar la gran unificación. Al final la temperatura era de 10^23 grados kelvin (mil millones de veces menos que al comienzo) y la fuerza de la gravedad se separó de las demás. Las otras tres interacciones, sin embargo, seguían «muy unificadas».
A partir de este momento, todo cambió: llegó la inflación. «Esta fase se caracteriza por una enorme expansión del espacio, tal vez por un factor de 10^30 o más», dice Abril. Y todo ocurrió entre los 10^-36 y los 1o^-32 segundos tras el Big Bang. Por tanto, la expansión del espacio-tiempo fue mucho más rápida que la velocidad de la luz. Por desgracia, la teoría no explica cómo o por qué ocurrió esta gran expansión.
Modelo de origen del Universo
Modelo de origen del Universo - CC
Después de la inflación llegó la época de los quarks. Las fuerzas electromagnética y débil se separaron y quedaron tal como son hoy en día. Este momento se caracteriza por la presencia de mesones, formados por un quark y un antiquark, y de bariones, (como el neutrón y el protón) formados por tres quarks.
Después de los mesones y bariones llegaron los hadrones. Desde una millonésima de segundo tras del Big Bang, toda una eternidad en estas escalas, hasta un segundo después de la gran explosión, los hadrones y los antihadrones se aniquilaron. Pero quedó un residuo de hadrones, en forma de núcleos de hidrógeno (es decir, protones).
Desde el primer segundo a los tres minutos siguientes tras el Big Bang, los leptones y los antileptones se aniquilaron, pero quedó un residuo de leptones, entre los que están los importantes electrones.
Finalmente, en estos tres primeros minutos se formaron los núcleos de hidrógeno y los electrones necesarios para la «fabricación» o nucleosíntesis de todos los elementos químicos.

Miles de millones de años luz en un instante

Una vez que el Universo se enfrió lo suficiente como para la aparición de la materia, siguieron ocurriendo importantes cambios, cuyas consecuencias siguen hoy afectándonos. Tan solo unos instantes después del Big Bang, el Universo alcanzó un diámetro de miles de millones de años luz.
En este espacio recién nacido, comenzó una época de la radiación, que duró hasta los 200.000 años después del Big Bang. En este momento, la mayor parte de la energía del Universo estaba en forma de radiación.
Después, comenzó la era dorada de la materia, en la que vivimos actualmente, y en la que el Universo se enfrío notablemente, hasta una temperatura media de tres grados kelvin. En un principio, el Universo era opaco para los fotones, porque quedaban absorbidos por los electrones.
Pero, a partir de los 350.000 años de edad, el Universo se «diluyó» y enfrió lo suficiente como para que los fotones «volasen» libres (como hacen hoy en día), en lo que se podría considerar como la primera luz del Universo y en una época conocida como el periodo de la recombinación. Diez millones de años después, la gravedad permitió la formación de estructuras capaces de agrupar el hidrógeno y el helio, permitiendo la aparición de galaxias, estrellas, planetas y precampañas electorales.

¿Cómo sabemos qué el Big Bang ocurrió?

¿Qué diferencia a todo lo dicho de un cuento o una historia mitológica? Fundamentalmente, las evidencias empíricas. Entre todas ellas, dos apoyan la teoría del Big Bang con más firmeza. La primera es es laradiación de fondo de microondas (o CMB), un vestigio de lo ocurrido en el Universo cuando solo tenía 300.000 años. La otra es la expansión del Universo, una evidencia observada en todas direcciones y que sugiere que, en un origen, las galaxias y la materia a partir de la que se formaron estaban más próximas.
Esta radiación de fondo fue detectada a mediados de los sesenta por los radioastrónomos Arno A. Penzias y Robert W. Wilson, cuando intentaban captar las ondas de radio procedentes de la galaxia. Captaron una fuente que parecía provenir de todas partes y no cambiar en ningún momento y, en un principio, lo achacaron a que su antena estaba manchada con caca de paloma. ¿Qué podía si no estar causando esa distorsión de forma tan deslocalizada?
Pero resultó que sus lecturas coincidieron con lo predicho por otro científico, George Gamow. Así que dedujeron que estaban captando una radiación fósil creada cuando el Universo era realmente joven y que estaba llegando hasta nuestro planeta desde los confines del espacio. En concreto, resulta que la radiación de fondo cósmico fue originada por el corrimiento al rojo de los fotones de la época de la recombinación, cuando el Universo se hizo transparente y estos pudieron «volar» libremente. Se sabe que esta radiación es muy uniforme y que se ha expandido y enfriado unas 1.100 veces desde su origen.
Sutiles fluctuaciones de temperatura en el Universo primitivo, captados por la sonda WMAP, que muestran la radiación de fondo de microondas
Sutiles fluctuaciones de temperatura en el Universo primitivo, captados por la sonda WMAP, que muestran la radiación de fondo de microondas - NASA/WMAP
Aparte de eso hay otro gran indicio, que nos pasa desapercibido, pero que muestra que el Universo se está expandiendo a una velocidad endiablada. Resulta que, cuanto más lejos están dos objetos, más rápido se alejan. En concreto, se mantiene un valor constante, conocido como constante de Hubble, allá donde miremos: la velocidad de expansión del Universo es de 73 km/s por megaparsec (Mpc). Por ejemplo, dos galaxias separadas en 10 Mpc se alejan a una velocidad de 730 kilómetros cada segundo.
Esta expansión no es fruto de un mito u ocurrencia. Se observa en los espectros de luz que leemos en la Tierra procedentes de las galaxias lejanas, gracias al corrimiento hacia el rojo de la longitud de onda de esta radiación. Si miramos ahí arriba, y resulta que todo se está alejando, es porque en el pasado todo estaba mucho más junto. A la luz de lo postulado gracias a nuestros conocimientos en mecánica cuántica, todo bien pudiera haber comenzado en un átomo primigenio.
A pesar de todo, es muy razonable que le resulte difícil de creer que ocurriera algo así como el Big Bang, por no hablar de los universos paralelos o el modelo del Big Crunch. Sea cual sea la respuesta, será sorprendente e increíble. En realidad, tanto como la existencia de miles de millones de galaxias o de átomos minúsculos en el interior de nuestras células.

No hay comentarios:

Publicar un comentario